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The mechanism of  shear of  an amorphous 
metal 

For the shear deformation of a metallic glass, 
Gilman [1,2] has suggested a model for the yield 
stress involving the glide motion of dislocations. 
These defects are supposed to have variable 
Burgers vectors along their lines, but to have a 
mean Burgers vector b equal to the mean atom 
spacing. The resistance to glide is assumed to be 
provided by the elastic resistance to a local dilata- 
tion, normal to the glide plane, which accompanies 
glide motion; somewhat analogous to shear models 
in soil mechanics. By balancing the work done by 
the resolved shear stress r per unit length of line 
per increment of advance b, rb 2 , with the work 
performed in creating the normal dilatation, he 
obtains an expression for o. For the latter case, the 
work is assumed to be one-third of the work of 
formation of a spherical point defect, as modelled 
by a ball in a hole [3 -5 ] .  Thus, he obtains the 
expression for tension or compression, where the 
yield stress o = 2r, 

o = 8rce2B/(1 + 3B/4/a), (1) 

where e is the strain normal to the glide plane, B is 
the bulk modulus and ~t is the shear modulus. 

Here, we consider several different cases, which 
give results for o close to, but somewhat different 
from, Equation 1. If the dislocation moves as a 
line and creates a cylindrical dilatation field with 
strength 6A/A = 20, where A is the area of the 
core region, then a 2-dimensional analog of the 
3-dimensional result of Eshelby [3 -5 ] ,  including 
both the work done on the surroundings by the 
core and strain energy stored in the core, gives a 
work term 

W1 = A(2e2~ + 2eP)(4p + 3B)/(p + 3B), (2) 

with a corresponding shear work term rA. Here, 
the work of interaction 2PSA of the defect and an 
external pressure P has been included. Alterna- 
tively, akin to the Gilman model, one can suppose 
that only strain normal to the glide plane is 
produced. Then the work term, again including 
strain energy stores in the core, is 

W2 ~ A(e21a -- eoN)(10U + 3B)/(4~t + 3B), (3) 

with oN the normal stress. Spaepen and Turnbull 
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[6] have suggested a model, not involving the 
dislocation concept, in which shear is accompanied 
by a local dilatation at the elastic-plastic bound- 
ary. This would lead to an expression such as 
Equation 2, but with A' and e' now referring to 
the new boundary, rather than to the core, and 
with an added term corresponding to the dissi- 
pated plastic work per unit volume, We 

W3 = A'(2e'2/a + 2e'P)(4/z + 3B)/(/~ + 3B) + We. 
(4) 

Another type of dislocation model would be to 
assume that motion occurs by lateral motion of 
kinks along a dislocation with work rb 3 now 
balanced by a local point-type strain field. If the 
local field is solely a strain normal to the glide 
plane, the work term would be W = W2b, which, 
when balanced with the shear work would give the 
same result as Equation 3; hence, this model need 
not be considered explicitly. Alternatively, the 
kink displacement could be a ball-in-hole-type 
dilatation which would give 

~]4 w_ V(6e2tl + 3eP)(4g + 3B)/3B. (5) 

Performing the appropriate work balances, the 
above expressions give corresponding predictions 
of the yield stress in tension or compression with 
or without superpo~ed hydrostatic pressure. For 
this balance we assume core dimensions A = b 2 
and V = b 3 , giving 

01 = (402/~ + 40P)(4~ + 3B)/(/~ + 3B) (6) 

02 = (202# -- 2eON)(10/~ + 3B)/(4/a + 3B) (7) 

oa = (40'2/a + 40'P)(4/~ + 3B)/(/~ + 3B) + Wi, 
(8) 

o4 = (1202/a + 60P)(4/~ + 3B)/3B. (9) 

For purposes of correlation with experimentally 
observed yield strengths the interaction work 
terms are negligible, but for the strength- 
differential (SD) effect, discussed next, they are 
important. 

Models of the above type give specific predic- 
tions of the SD effect wherein the flow stress 
varies in general with the total applied stress ten- 
sor or, in more limited cases, with superposed 
hydrostatic stress. The relevant SD expressions for 
the above forms are 

(~o/aP)l = [4e2(Ot.t/~P) + 4] (4/~ + 3B)/(la + 3B) 

(10) 
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(3a/3a~,r)2 = [-- 2e2(3/2/3P) -- 2el (10U + 3B)/ 

(4/2 + 3B) (11) 

(3a/OP)3 = [4e'2(31.t/3P) + 4e'] (4/2 + 3B)/ 

(/2 + 3B) (12) 

(3a/3P)4 = [12eZ(3u/3P) + 6e] (4/2 + 3B)/3B 

(13) 

Experimentally, the SD has been determined 
for Pd7sSil6CU6 both by determining [7] the 
variation o f  flow stress with superposed hydro- 
static pressure of  6.9 • 10 9 Pa and by comparing 
[7, 8] the flow stress in compression, 1.54 • 
10 9 Pa, and in tension, 1.44 • 10 9 Pa. The direct 
variation with P gives (3o/3P) = 0.08. The varia- 
tion in tension and compression gives ( 3 a / 3 o N ) =  
--0 .07 [8] and - -0 .08 [7]. I f  the variation with 
aN were to reflect a true variation with P, since 
aN = a/2 = --3P/2, the tension-compression tests 
would give (3a/3P) = 0.10 [8] and 0.11 [9]. On 
the other hand, if the variation with actual super- 
posed P reflected a true variation with aN, the 
pressure experiments would give ( 3 a / 3 a N ) =  
�9 - -0.08,  since then aN = --P.  Thus, the results to 
date for the SD effect alone strongly support the 
aN dependent model dependence of  Equation 11 
as opposed to the P-dependent models. Neverthe- 
less, for comparison of  correlations between the 
SD results and the flow stress results, the value 
(3a/3aN) = --0.08 is used for Equation 11, and 
the mean value (3a/3P) = 0.09 for Equations 10, 
12 and 13. The use of  (Oa/3P) = 0.08 instead in 
the latter case would give a decrease of  about 5% 
in the values of  e computed from Equations I0, 12 
or 13 to match the experimental SD results. 

Pressure dependences of/2 and B have not been 
measured for metallic glasses, so the correlation 
among Equations 6 to 9 and Equations 10 to 13 
cannot be evaluated directly on the basis of  inde- 
pendent experimental data. The correlation can be 
tested indirectly to assess how closely the necess- 
ary values for the pressure dependence of  the 
elastic constants conform to the typical values [7] 
for metals o f  3 lnB/3P '~5  • 10 -11Pa -1. Data 
necessary for the correlation, in addition to those 
listed above, are [7, 9] : B = 1.67 • 1011 Pa,/2 = 
3.15 x 101~ Pa, (3BliP) = -- (3BI3 ai, r) = 8.35, (3/21 
3P) = - - ( 3 / 2 / 3 a N ) =  1.58, with the pressure 

TAB LE I Values of normal strain e required in Equations 
6 to 9 to fit experimental data for a and corresponding 
values of (2 In B/bP) computed from Equations 10 to 13. 

Equation e to match a a In B/aP 
(Pa -1 ) 

6, 8, 10and 12 0.100 --3.11 • 10 -~ 
7 and 11 0.120 --1.96 • 10 -0 
9 and 13 0.056 --2.23 X 10 -1~ 

dependences conforming to the typical metal 
values. 

As a first correlation, we suppose that Equa- 
tions 6 to 9 explain in turn the flow stresses, and 
we calculate the values of  e for such a fit in each 
case, as listed in Table I. These values of  e are then 
inserted into Equations 10 to 13, asstiming only 
that 3 In B/3P = 3 In/2/3P, and the requisite values 
of  (3 In B/3P) to fit the SD data are computed in 
each case, as also listed in Table I. In this correla- 
tion, the aN-dependent model, Equations 7 and 11 
give the best agreement with the expected value of  
(3 ]nB/3P) = 5 x 10 -11Pa -1 , and the model of  
Equations 9 and 13 gives no agreement at all (a 
negative value of  3 In B/3P is physically imposs- 
ible). However, the agreement is not  good even for 
the best case. 

A second correlation is to assume the expected 
value of  (3 ln B/3P) and to calculate e values 
required to fit the measured SD dependence for 
Equations 10 to 13 as listed in Table II. The 
fraction of  the flow stress related to these strain 
values can then be computed from Equations 6 to 
9, as also listed in Table II. The remainder of  the 
flow stress is then supposed to be contributed by a 
plastic dissipative term with minimal pressure 
dependence. A model for such a term would be a 
local bond-breaking dislocation-core-like contri- 
bution to the flow resistance. Again the model of  
Equations 7 and 11 gives the best overall corre- 

TABLE II Values of normal strain e required in Equa- 
tions 10 to 13 to fit experimental data for the SD effect 
and the corresponding fractional contribution, calculated 
from Equations 6 to 9, to the experimental flow stress 
values. 

Equation e to match Fraction of a 
SD 

6, 8, 10 and 12 0.019 0.036 
7 and 11 0.029 0.058 
9 and 13 0.012 0.043 
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lation. Moreover, it seems more plausible that part 
of the flow stress has a bond-breaking component, 
than that the pressure dependence of the elastic 
constants is abnormally low, so the latter corre- 
lation is deemed to be the best. 

Attempts to modify Equation 7 by adding a 
viscous term ~/1 to the flow stress equation makes 
the fit worse, so such an alternative can be 
excluded. 

In summary, the SD effect alone and a com- 
parison of SD results and flow stress results favour 
a model of dilatation normal to the glide plane, 
rather than one of hydrostatic pressure as a contri- 
bution to the flow resistance. This result is consist- 
ent with a dislocation-type flow mechanism in 
metallic glasses as suggested by Gilman [1, 2]. 
However, an exact fit to experimental results also 
requires a major contribution of a dissipative-type 
term to the flow resistance. An improved test of 
the suggested correlation could be achieved if 
independent measurements of the pressure depen- 
dence of the elastic constants were made available 
for metallic glasses. 
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A new chemical polish and the study of 
dislocation movement in fithium fluoride 
crystals 

The extent and nature of the dislocation move- 
ment produced in rocksalt-type crystals is well 
documented [1 -3 ] .  In particular, in magnesium 
oxide crystals the dislocation movement produced 
beneath localized regions of deformation caused 
by both indenters and sliders has been described 
recently [4]. The experimental technique used in 
that previous work involves repeated chemical 
polishing and etching of the deformed crystal in 
order to build up a cumulative picture of the dis- 
location pattern produced in the crystal bulk. In 
this way, the size and shape of the dislocated zone 
beneath a given indentation has been determined, 
and it has been established that the dimensions of 
this zone are largely defined by the magnitude and 
duration of the applied load, rather than by the 
shape of the indenter [4, 5]. A similar study on 
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lithium fluoride crystals was initiated but, whilst a 
good dislocation etchant for this crystal is avail- 
able, chemical polishing presented some problems. 
For the crystals used in this work, the polishing 
techniques and solutions used by Gilman and 
Johnston [3] and Borzhkovskaya et aL [6] pro- 
duced surfaces which were too badly pitted to 
allow satisfactory application and interpretation of 
the subsequent dislocation etchant. As a result the 
following chemical polish was developed. 

Single crystal specimens, (supplied by Rank 
Precision Industries, Margate and containing 
50 p p m potassium, 20 p p m other elements) 
approximately 20 m m x  20 m m x  3 ram, were 
cleaved from large pieces of lithium fluoride; these 
were subsequently annealed in an argon atmos- 
phere for six hours at 650~ and then slowly 
cooled to room temperature. Each crystal was 
washed in fresh water at 50 ~ C and then vigorously 
agitated for 7sec in fresh concentrated hydro- 
chlodc acid, also at 50 ~ C, and then washed again 
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